Abstract

Antigen self-assembly nanovaccines advance the minimalist design of therapeutic cancer vaccines, but the issue of inefficient cross-presentation has not yet been fully addressed. Herein, we report a unique approach by combining the concepts of “antigen multi-copy display” and “calcium carbonate (CaCO3) biomineralization” to increase cross-presentation. Based on this strategy, we successfully construct sub-100 nm biomineralized antigen nanosponges (BANSs) with high CaCO3 loading (38.13 wt%) and antigen density (61.87%). BANSs can be effectively uptaken by immature antigen-presenting cells (APCs) in the lymph node upon subcutaneous injection. Achieving efficient spatiotemporal coordination of antigen cross-presentation and immune effects, BANSs induce the production of CD4+ T helper cells and cytotoxic T lymphocytes, resulting in effective tumor growth inhibition. BANSs combined with anti-PD-1 antibodies synergistically enhance anti-tumor immunity and reverse the tumor immunosuppressive microenvironment. Overall, this CaCO3 powder-mediated biomineralization of antigen nanosponges offer a robust and safe strategy for cancer immunotherapy.

Details

Title
CaCO3 powder-mediated biomineralization of antigen nanosponges synergize with PD-1 blockade to potentiate anti-tumor immunity
Author
Su, Runping; Gu, Jingjing; Sun, Juanjuan; Zang, Jie; Zhao, Yuge; Zhang, Tingting; Chen, Yingna; Chong, Gaowei; Yin, Weimin; Zheng, Xiao; Liu, Bingbing; Huang, Li; Ruan, Shuangrong; Dong, Haiqing; Li, Yan; Li, Yongyong
Pages
1-15
Section
Research
Publication year
2023
Publication date
2023
Publisher
BioMed Central
e-ISSN
14773155
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2803051340
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.