Abstract

As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.

Stretchable and degradable elastomers are crucial for developing transient and bioresorbable electronics. Herein, Han et al. tuned the diverse properties of biodegradable PLCL elastomers and demonstrated their application in soft, perceptive robotic grippers and transient, suture-free cardiac jackets.

Details

Title
Ultra-stretchable and biodegradable elastomers for soft, transient electronics
Author
Han, Won Bae 1   VIAFID ORCID Logo  ; Ko, Gwan-Jin 1   VIAFID ORCID Logo  ; Lee, Kang-Gon 2 ; Kim, Donghak 3 ; Lee, Joong Hoon 1   VIAFID ORCID Logo  ; Yang, Seung Min 4   VIAFID ORCID Logo  ; Kim, Dong-Je 1 ; Shin, Jeong-Woong 1   VIAFID ORCID Logo  ; Jang, Tae-Min 1   VIAFID ORCID Logo  ; Han, Sungkeun 1 ; Zhou, Honglei 5 ; Kang, Heeseok 1   VIAFID ORCID Logo  ; Lim, Jun Hyeon 1 ; Rajaram, Kaveti 1   VIAFID ORCID Logo  ; Cheng, Huanyu 5   VIAFID ORCID Logo  ; Park, Yong-Doo 2 ; Kim, Soo Hyun 3 ; Hwang, Suk-Won 6   VIAFID ORCID Logo 

 Korea University, KU-KIST Graduate School of Converging Science and Technology, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678) 
 Korea University, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678) 
 Korea Institute of Science and Technology (KIST), Center for Biomaterials, Biomedical Research Institute, Seoul, Republic of Korea (GRID:grid.35541.36) (ISNI:0000000121053345) 
 Korea University, KU-KIST Graduate School of Converging Science and Technology, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678); Hanwha Systems Co., Ltd., Seongnam-Si, Gyeonggi-do, Republic of Korea (GRID:grid.222754.4) 
 The Pennsylvania State University, Department of Engineering Science and Mechanics, University Park, USA (GRID:grid.29857.31) (ISNI:0000 0001 2097 4281) 
 Korea University, KU-KIST Graduate School of Converging Science and Technology, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678); Korea Institute of Science and Technology (KIST), Center for Biomaterials, Biomedical Research Institute, Seoul, Republic of Korea (GRID:grid.35541.36) (ISNI:0000000121053345); Korea University, Department of Integrative Energy Engineering, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678) 
Pages
2263
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2803741699
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.