Abstract

Particle therapy (PT) used for cancer treatment can spare healthy tissue and reduce treatment toxicity. However, full exploitation of the dosimetric advantages of PT is not yet possible due to range uncertainties, warranting development of range-monitoring techniques. This study proposes a novel range-monitoring technique introducing the yet unexplored concept of simultaneous detection and imaging of fast neutrons and prompt-gamma rays produced in beam-tissue interactions. A quasi-monolithic organic detector array is proposed, and its feasibility for detecting range shifts in the context of proton therapy is explored through Monte Carlo simulations of realistic patient models and detector resolution effects. The results indicate that range shifts of 1mm can be detected at relatively low proton intensities (22.30(13)×107 protons/spot) when spatial information obtained through imaging of both particle species are used simultaneously. This study lays the foundation for multi-particle detection and imaging systems in the context of range verification in PT.

Details

Title
A hybrid multi-particle approach to range assessment-based treatment verification in particle therapy
Author
Meric, Ilker 1 ; Alagoz, Enver 1 ; Hysing, Liv B. 2 ; Kögler, Toni 3 ; Lathouwers, Danny 4 ; Lionheart, William R. B. 5 ; Mattingly, John 6 ; Obhodas, Jasmina 7 ; Pausch, Guntram 8 ; Pettersen, Helge E. S. 9 ; Ratliff, Hunter N. 1 ; Rovituso, Marta 10 ; Schellhammer, Sonja M. 3 ; Setterdahl, Lena M. 1 ; Skjerdal, Kyrre 1 ; Sterpin, Edmond 11 ; Sudac, Davorin 7 ; Turko, Joseph A. 3 ; Ytre-Hauge, Kristian S. 12 

 Western Norway University of Applied Sciences, Department of Computer Science, Electrical Engineering and Mathematical Sciences, Bergen, Norway (GRID:grid.477239.c) (ISNI:0000 0004 1754 9964) 
 Haukeland University Hospital, Department of Oncology and Medical Physics, Bergen, Norway (GRID:grid.412008.f) (ISNI:0000 0000 9753 1393); University of Bergen, Department of Physics and Technology, Bergen, Norway (GRID:grid.7914.b) (ISNI:0000 0004 1936 7443) 
 Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, OncoRay–National Center for Radiation Research in Oncology, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); Institute of Radiooncology–OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612) 
 Delft Universiy of Technology, Delft, The Netherlands (GRID:grid.5292.c) (ISNI:0000 0001 2097 4740) 
 The University of Manchester, Manchester, UK (GRID:grid.5379.8) (ISNI:0000000121662407) 
 North Carolina State University, Department of Nuclear Engineering, Raleigh, USA (GRID:grid.40803.3f) (ISNI:0000 0001 2173 6074) 
 Ruder Boskovic Institute, Zagreb, Croatia (GRID:grid.4905.8) (ISNI:0000 0004 0635 7705) 
 Target Systemelektronik GmbH & Co. KG, Wuppertal, Germany (GRID:grid.4905.8) 
 Haukeland University Hospital, Department of Oncology and Medical Physics, Bergen, Norway (GRID:grid.412008.f) (ISNI:0000 0000 9753 1393) 
10  Holland Particle Therapy Centre, Delft, The Netherlands (GRID:grid.477239.c) 
11  KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium (GRID:grid.5596.f) (ISNI:0000 0001 0668 7884) 
12  University of Bergen, Department of Physics and Technology, Bergen, Norway (GRID:grid.7914.b) (ISNI:0000 0004 1936 7443) 
Pages
6709
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2805772445
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.