Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The significance of long-span bridges being susceptible to wind-induced vibrations and the need for evaluating their aerodynamic performance is the focus of this study. The main emphasis is on experimental methods for assessing the bridges’ aerodynamic stability, using sectional model tests with the free vibration technique. The dynamic properties of the model are determined from the measured response, using various system identification methods, including the modified Ibrahim time domain (MITD) and iterative least squares (ILS) for two-degree-of-freedom systems and the logarithmic decrement method (LDM) and the Hilbert transform method (HTM) for single-degree-of-freedom (SDOF) systems. A new dynamic testing setup was designed to facilitate single-degree-of-freedom (heave and pitch) and coupled two-degree-of-freedom (2DOF) motion in a wind tunnel section model. The vertical and torsional stiffnesses of the model were adjusted with elastic springs. A Great Belt Bridge section model was selected for testing due to its streamlined aerodynamic shape. The direct and crossflow derivatives were extracted from the measured response using the system identification methods mentioned. Additionally, analytical studies and numerical computational fluid dynamics simulations were conducted to validate the experimental results. The study found that HTM is most effective in SDOF due to its ability to extract both damping and frequency from the nonlinear response, whereas the MITD method is faster in converging system parameters in 2DOF system tests. The experimental and numerical results are comparable to the flat plate, which confirms the streamlined behavior of the Great Belt section from an aerodynamic perspective.

Details

Title
Evaluation of System Identification Methods for Free Vibration Flutter Derivatives of Long-Span Bridges
Author
Awan, Muhammad Saqlain 1 ; Javed, Ali 2   VIAFID ORCID Logo  ; Muhammad Faheem Ud Din Afzal 2   VIAFID ORCID Logo  ; Navarro Vilchez, Luis Federico 1   VIAFID ORCID Logo  ; Mehrabi, Armin 2   VIAFID ORCID Logo 

 Faculty of Civil Engineering, Bauhaus-Universität Weimar, 99423 Weimar, Germany; [email protected] (M.S.A.); [email protected] (L.F.N.V.) 
 Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174, USA; [email protected] 
First page
4672
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806476661
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.