Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-speed train is a large-scale electromechanical coupling equipment with a complex structure, where the coupling is interlaced between various system components, and the excitation sources are complex and diverse. Therefore, reliability has become the top priority for the safe operation of high-speed trains. As the operating mileage of high-speed trains increases, various key systems experience various degrees of performance degradation and damage failures. Moreover, it is accompanied by the influence of external environmental high interference noise and weak early fault information. Thus, those factors are serious challenges for the condition monitoring and fault diagnosis of high-speed trains. Therefore, this paper summarizes the research progress and theoretical results of the fault detection, fault isolation, and fault diagnosis methods of the key systems of high-speed trains. Finally, the paper summarizes the applicability of the main methods, discusses the challenges and opportunities of condition monitoring and fault diagnosis of high-speed trains, and looks forward to improving its diagnosis level.

Details

Title
A Review of Fault Diagnosis Methods for Key Systems of the High-Speed Train
Author
Xie, Suchao 1   VIAFID ORCID Logo  ; Tan, Hongchuang 1 ; Yang, Chengxing 1 ; Yan, Hongyu 1 

 Key Laboratory of Traffic Safety on Track, Central South University, Changsha 410075, China; [email protected] (H.T.); [email protected] (C.Y.); [email protected] (H.Y.); School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Changsha 410075, China 
First page
4790
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806477061
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.