Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Large-scale energy storage with high performance and at a reasonable cost are prerequisites for promoting clean energy utilization. With a high theoretical energy density of 1722 Wh·kg−2, high element abundance (e.g., Mg of 23,000 ppm, S of 950 ppm on earth), and low theoretical cost, Mg-S batteries offer considerable potential as candidates for electrical energy storage. However, due to the intrinsic complex reaction chemistry of sulfur cathodes and metal anodes, such as slow diffusion of the divalent ion, the shuttle of soluble polysulfide, and irreversible deposition of Mg ions on metal electrodes, Mg-S batteries still need further optimization to meet requirements for practical applications. In addition to stabilizing metal anodes, developing a suitable sulfur cathode is desperately needed. This review summarizes recent research progress in sulfur cathodes, interlayers, and non-nucleophilic electrolytes, highlighting the main challenges and corresponding strategies for electrode material designs. Notably, we emphasize a fundamental understanding of the structure-composition relationship. Furthermore, state-of-the-art characterization techniques are described that help reveal the pertinent electrochemical mechanisms whereby Mg-S cells function. Finally, possible research directions are discussed.

Details

Title
Advances in Cathodes for High-Performance Magnesium-Sulfur Batteries: A Critical Review
Author
Yao, Ying Ying 1 ; Yang, Zhan 1 ; Xin Yu Sun 1 ; Zhao, Li 1 ; Xu, Hao 1 ; Laine, Richard M 2 ; Jian Xin Zou 3 

 National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China 
 Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA 
 National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Mg Materials and Applications & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 
First page
203
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23130105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806482639
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.