Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The joint optimization of power systems, mobile energy storage systems (MESSs), and renewable energy involves complex constraints and numerous decision variables, and it is difficult to achieve optimization quickly through the use of commercial solvers, such as Gurobi and Cplex. To address this challenge, we present an effective joint optimization approach for MESSs and power grids that consider various renewable energy sources, including wind power (WP), photovoltaic (PV) power, and hydropower. The integration of MESSs could alleviate congestion, minimize renewable energy waste, fulfill unexpected energy demands, and lower the operational costs for power networks. To model the entire system, a mixed-integer programming (MIP) model was proposed that considered both the MESSs and the power grid, with the goal of minimizing costs. Furthermore, this research proposed a highly efficient deep reinforcement learning (DRL)-based method to optimize route selection and charging/discharging operations. The efficacy of the proposed method was demonstrated through many numerical simulations.

Details

Title
Deep Reinforcement Learning-Based Method for Joint Optimization of Mobile Energy Storage Systems and Power Grid with High Renewable Energy Sources
Author
Ding, Yongkang 1 ; Chen, Xinjiang 1   VIAFID ORCID Logo  ; Wang, Jianxiao 2 

 Department of Industrial Engineering and Management, Peking University, Beijing 100871, China 
 National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing 100871, China 
First page
219
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23130105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806482939
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.