Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The performance of hybrid basalt fiber (BF)-reinforced concrete made with recycled concrete aggregates (RCAs) and dune sand as an eco-friendly construction material is examined. Test variables comprised the base concrete grade (normal- and high-strength concrete (NSC and HSC)), the hybrid BF volume fraction (νf = 1.0 and 1.5%), and the RCA replacement percentage (30, 60, and 100%). The workability of the concrete mixtures was evaluated via the slump test. The mechanical properties were assessed using compression, splitting tensile, and four-point flexural tests. The durability characteristics were examined using bulk resistivity and ultrasonic pulse velocity (UPV) tests. The addition of hybrid BFs was detrimental to the slump and compressive strength of the concrete mixtures. In contrast, improvements of up to 32 and 40% were recorded in the splitting and flexural strengths of NSC mixtures made with 30–100% RCA. The HSC mixtures exhibited respective improvements of up to 26 and 34% at RCA replacement percentages of 30–60%. The bulk resistivity and UPV values of NSC and HSC mixtures remained almost unaltered with the addition of hybrid BFs. New idealized tensile softening laws were developed for RCA–based concrete reinforced with hybrid BFs. The tensile softening laws were implemented into numerical models that simulated the flexural behavior of the tested concrete prisms with good accuracy.

Details

Title
Properties and Tensile Softening Laws of Hybrid Basalt Fiber Reinforced Recycled Aggregate Concrete
Author
Shoaib, Shahrukh  VIAFID ORCID Logo  ; El-Hassan, Hilal  VIAFID ORCID Logo  ; El-Maaddawy, Tamer  VIAFID ORCID Logo 
First page
975
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806513533
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.