Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The frequent occurrence of forest fires in recent years has not only seriously damaged the forests’ ecological environments but also threatened the safety of public life and property. Smoke, as the main manifestation of the flame before it is produced, has the advantage of a wide diffusion range that is not easily obscured. Therefore, timely detection of forest fire smoke with better real-time detection for early warnings of forest fires wins valuable time for timely firefighting and also has great significance and applications for the development of forest fire detection systems. However, existing forest fire smoke detection methods still have problems, such as low detection accuracy, slow detection speed, and difficulty detecting smoke from small targets. In order to solve the aforementioned problems and further achieve higher accuracy in detection, this paper proposes an improved, new, high-accuracy forest fire detection model, the OBDS. Firstly, to address the problem of insufficient extraction of effective features of forest fire smoke in complex forest environments, this paper introduces the SimAM attention mechanism, which makes the model pay more attention to the feature information of forest fire smoke and suppresses the interference of non-targeted background information. Moreover, this paper introduces Omni-Dimensional Dynamic Convolution instead of static convolution and adaptively and dynamically adjusts the weights of the convolution kernel, which enables the network to better extract the key features of forest fire smoke of different shapes and sizes. In addition, to address the problem that traditional convolutional neural networks are not capable of capturing global forest fire smoke feature information, this paper introduces the Bottleneck Transformer Net (BoTNet) to fully extract global feature information and local feature information of forest fire smoke images while improving the accuracy of small target forest fire target detection of smoke, effectively reducing the model’s computation, and improving the detection speed of model forest fire smoke. Finally, this paper introduces the decoupling head to further improve the detection accuracy of forest fire smoke and speed up the convergence of the model. Our experimental results show that the model OBDS for forest fire smoke detection proposed in this paper is significantly better than the mainstream model, with a computational complexity of 21.5 GFLOPs (giga floating-point operations per second), an improvement of 4.31% compared with the YOLOv5 (YOLO, you only look once) model [email protected], reaching 92.10%, and an FPS (frames per second) of 54, which is conducive to the realization of early warning of forest fires.

Details

Title
Omni-Dimensional Dynamic Convolution Meets Bottleneck Transformer: A Novel Improved High Accuracy Forest Fire Smoke Detection Model
Author
Qian, Jingjing 1 ; Lin, Ji 1   VIAFID ORCID Logo  ; Bai, Di 2 ; Xu, Renjie 3 ; Lin, Haifeng 1   VIAFID ORCID Logo 

 The College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; [email protected] (J.Q.); 
 College of Information Management, Nanjing Agricultural University, Nanjing 210095, China 
 Department of Computing and Software, McMaster University, Hamilton, ON L8S 4L8, Canada 
First page
838
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806521870
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.