Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The maritime land–sea communication channel experiences multipath shadowing and fading due to ships, onshore and offshore structures, and reflections from the sea surface. When using low altitude antennas, the sea surface itself can block the propagation of radio waves when the first Fresnel zone is obstructed. The latter can occur within a few kilometres of the transmitter at microwave frequencies. Sea reflections are stronger than ground reflections due to the higher conductivity of the sea, leading to more interference problems. In this paper, a microwave frequency patch antenna array is analysed, designed, and simulated for a novel system to improve marine communications to be applied by unmanned aerial vehicles (UAVs). The patch antenna array with flexible substrate will be studied with different frequencies. In this way, the test will check and obtain the best characteristics for an antenna that is built into the UAV with CTS studio.

Details

Title
Design, Analysis and Simulation of Microstrip Antenna Arrays with Flexible Substrate in Different Frequency, for Use in UAV-Assisted Marine Communications
Author
Gómez, Leopoldo 1 ; Ibrahim, Ahmed S 2 

 Escuela Superior de Ingeniería, Universidad de Cádiz, 11519 Puerto Real, Spain 
 Electrical and Computer Engineering Department, Florida International University, Miami, FL 33199, USA 
First page
730
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806554011
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.