Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Poultry litter is a valuable crude protein feedstuff for ruminants, but it must be treated to kill pathogens before feeding. Composting effectively kills pathogens, but it risks losing ammonia to volatilization or leaching during degradation of uric acid and urea. Hops bitter acids also exert antimicrobial activity against certain pathogenic and nitrogen-degrading microbes. Consequently, the present studies were conducted to test if adding bitter acid-rich hop preparations to simulated poultry litter composts may improve nitrogen retention while simultaneously improving pathogen killing. Results from an initial study, testing doses of Chinook or Galena hops preparations designed to each deliver 79 ppm hops β-acid, revealed that, after nine days simulated composting of wood chip litter, ammonia concentrations were 14% lower (p < 0.05) in Chinook-treated composts than untreated composts (13.4 ± 1.06 µmol/g). Conversely, urea concentrations were 55% lower (p < 0.05) in Galena-treated than untreated composts (6.2 ± 1.72 µmol/g). Uric acid accumulations were unaffected by hops treatments in this study but were higher (p < 0.05) after three days than after zero, six, or nine days of composting. In follow-up studies, Chinook or Galena hops treatments (delivering 2042 or 6126 ppm of β-acid, respectively) for simulated composts (14 days) of wood chip litter alone or mixed 3:1 with ground Bluestem hay (Andropogon gerardii) revealed that these higher dosages had little effect on ammonia, urea, or uric acid accumulations when compared to untreated composts. Volatile fatty acid accumulations measured in these later studies were affected by the hops treatments, with butyrate accumulations being lower after 14 days in hops-treated composts than in untreated compost. In all studies, beneficial effects of Galena or Chinook hops treatments were not observed on the antimicrobial activity of the simulated composts, with composting by itself decreasing (p < 0.05) counts of select microbial populations by more than 2.5 log10 colony forming units/g compost dry matter. Thus, while hops treatments had little effect on pathogen control or nitrogen retention within the composted litter, they did lessen accumulations of butyrate, which may prevent adverse effects of this fatty acid on palatability of litter fed to ruminants.

Details

Title
Effects of Hops Treatment on Nitrogen Retention, Volatile Fatty Acid Accumulations, and Select Microbial Populations of Composting Poultry Litter Intended for Use as a Ruminant Feedstuff
Author
Castillo-Castillo, Yamicela 1 ; Arzola-Alvarez, Claudio 1 ; Fonseca, Mozart 2 ; Salinas-Chavira, Jaime 3   VIAFID ORCID Logo  ; Ontiveros-Magadan, Marina 4 ; Hume, Michael E 5 ; Anderson, Robin C 5   VIAFID ORCID Logo  ; Flythe, Michael D 6   VIAFID ORCID Logo  ; James Allen Byrd 5 ; Ruiz-Barrera, Oscar 1 

 Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Mexico 
 Department of Agriculture, Veterinary & Rangleland Sciences, University of Nevada, Reno, NV 89154, USA 
 Facultad de Medicina Veterinaria y Zootecnia—Nutricion Animal, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico 
 Departamento de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Ciudad Juárez, Juarez 32310, Mexico 
 Food and Feed Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA 
 Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY 40506, USA 
First page
839
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806566854
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.