Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Brown adipose tissue (BAT) consumes excess lipids and produces lipid metabolites as ketone bodies. These ketone bodies are then recycled for lipogenesis by the enzyme acetoacetyl-CoA synthetase (AACS). Previously, we found that a high-fat diet (HFD) upregulated AACS expression in white adipose tissue. In this study, we investigated the effects of diet-induced obesity on AACS in BAT. When 4-week-old ddY mice were fed a HFD or high-sucrose diet (HSD) for 12 weeks, a significant decrease in Aacs, acetyl-CoA carboxylase-1 (Acc-1), and fatty acid synthase (Fas) expression was observed in the BAT of the HFD group, whereas expression was not affected in the HSD group. In vitro analysis showed decreased Aacs and Fas expression in rat primary-cultured brown adipocytes following isoproterenol treatment for 24 h. In addition, the suppression of Aacs by siRNA markedly decreased the expression of Fas and Acc-1 but did not affect the expression of uncoupling protein-1 (UCP-1) or other factors. These results suggested that HFD may suppress ketone body utilization for lipogenesis in BAT and that AACS gene expression may be important for regulating lipogenesis in BAT. Therefore, the AACS-mediated ketone body utilization pathway may regulate lipogenesis under conditions of excess dietary fat.

Details

Title
High-Fat-Diet Suppressed Ketone Body Utilization for Lipogenic Pathway in Brown Adipose Tissues
Author
Yamasaki, Masahiro  VIAFID ORCID Logo  ; Hasegawa, Shinya  VIAFID ORCID Logo  ; Ozaki, Shotaro; Imai, Masahiko; Saito, Daisuke; Takahashi, Noriko
First page
519
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22181989
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806580425
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.