Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Extreme climate anomalies are expected to become more frequent under climate change, and rare extreme events, such as the 2021 western North American heat wave, provide an opportunity for comparative empirical analysis of ecosystem resilience. This study evaluates anomalies in a remotely sensed enhanced vegetation index (EVI) in the aftermath of the record-setting western North American heat wave in 2021, with temperatures approaching 50 °C in coastal and interior regions of the Pacific Northwest. The results show that the forest ecosystems most affected were not necessarily those that experienced the highest absolute temperature values. Instead, the greatest reductions in greenness were observed across northern coastal temperate rainforests. Most affected were the cooler, very wet, hyper-maritime ecosystems that are normally buffered from large temperature fluctuation by a strong oceanic influence. In contrast, moisture-limited forests of the interior plateau of British Columbia, where most of the all-time record temperatures occurred, generally showed normal or even increased productivity during and after the heat wave. A putative explanation for this heat resistance of interior forests was normal or above average precipitation leading up to the heat event, allowing for transpirational cooling. Nevertheless, the data suggest that the largest protected coastal temperate rainforest in the world, with 6.4 million hectares, is comparatively more vulnerable to extreme heat waves, which are expected to become more frequent under climate warming, than other ecosystems of the Pacific Northwest.

Details

Title
A Record-Setting 2021 Heat Wave in Western Canada Had a Significant Temporary Impact on Greenness of the World’s Largest Protected Temperate Rainforest
Author
Zihaohan Sang 1 ; Hamann, Andreas 2   VIAFID ORCID Logo 

 Department of Computer Science, University of Toronto, 40 St George St, Toronto, ON M5S 2E4, Canada 
 Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, AB T6G 2H1, Canada 
First page
2162
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806584812
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.