Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

L-cysteine, a component of the symmetric L-cystine, is essential in numerous biological activities. Thus, detecting cysteine rapidly, selectively, and sensitively is of tremendous interest. Herein, g-C3N4@CdS composites were employed as sensing elements in a photoelectrochemical platform for L-cysteine sensing. In this system, g-C3N4@CdS composites provided much better optoelectronic function than bare CdS materials owing to their high photon-to-current conversion efficiency and excellent anti-photocorrosion properties. The innovative photoelectrochemical sensor has a wide determination range of 5 to 190 µM, a very low detection limit of 1.56 µM, a fast response time, and good long-term stability (ca. 1 month). Without applying any separation procedures, a low concentration of CySH was successfully detected in human urine samples, which is compatible with the results of chemiluminescence.

Details

Title
Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochemical Platform
Author
Zhang, Hefeng; Qi, Shengliang; Wang, Haidong; Zhang, Guanghui; Zhu, Kaixin; Ma, Weiguang  VIAFID ORCID Logo 
First page
896
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806604758
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.