Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A methodology such as near-infrared (NIR) spectroscopy, which enables in situ and in real-time analysis, is crucial to perform quality control of biodiesel, since it is blended into diesel fuel and the presence of contaminants can hinder its performance. This work aimed to compare the performance of a benchtop Fourier Transform (FT) NIR spectrometer with a prototype of a portable, miniaturized near-infrared spectrometer (miniNIR) to detect and quantify contaminants in biodiesel and biodiesel in diesel. In general, good models based on principal component analysis-linear discriminant analysis (PCA-LDA) of FT-NIR spectra were obtained, predicting with high accuracies biodiesel contaminants and biodiesel in diesel (between 75% to 95%), as well as good partial least square (PLS) regression models to predict contaminants concentration in biodiesel and biodiesel concentration in diesel/biodiesel blends, with high coefficients of determination (between 0.83 and 0.99) and low prediction errors. The miniNIR prototype’s PCA-LDA models enabled the prediction of target contaminants with good accuracies (between 66% and 86%), and a PLS model enabled the prediction of biodiesel concentration in diesel with a reasonable coefficient of determination (0.68), pointing to the device’s potential for preliminary analysis of biodiesel which, associated with its potential low cost and portability, could increase biodiesel quality control.

Details

Title
Quality Monitoring of Biodiesel and Diesel/Biodiesel Blends: A Comparison between Benchtop FT-NIR versus a Portable Miniaturized NIR Spectroscopic Analysis
Author
Monteiro, Luísa L 1   VIAFID ORCID Logo  ; Zoio, Paulo 2 ; Carvalho, Bernardo B 3 ; Fonseca, Luís P 1   VIAFID ORCID Logo  ; Calado, Cecília R C 4   VIAFID ORCID Logo 

 Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy–i4HB, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; [email protected] (L.L.M.); [email protected] (P.Z.) 
 Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy–i4HB, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; [email protected] (L.L.M.); [email protected] (P.Z.); CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal 
 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal 
 CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal 
First page
1071
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806609012
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.