Abstract

Hybrid perovskites have emerged as a promising material candidate for exciton-polariton (polariton) optoelectronics. Thermodynamically, low-threshold Bose-Einstein condensation requires efficient scattering to the polariton energy dispersion minimum, and many applications demand precise control of polariton interactions. Thus far, the primary mechanisms by which polaritons relax in perovskites remains unclear. In this work, we perform temperature-dependent measurements of polaritons in low-dimensional perovskite wedged microcavities achieving a Rabi splitting of ΩRabi = 260 ± 5 meV. We change the Hopfield coefficients by moving the optical excitation along the cavity wedge and thus tune the strength of the primary polariton relaxation mechanisms in this material. We observe the polariton bottleneck regime and show that it can be overcome by harnessing the interplay between the different excitonic species whose corresponding dynamics are modified by strong coupling. This work provides an understanding of polariton relaxation in perovskites benefiting from efficient, material-specific relaxation pathways and intracavity pumping schemes from thermally brightened excitonic species.

Exciton-polaritons present opportunities for quantum photonics, next generation qubits, and tuning material photophysics. Here Laitz et al. study the temperature dependence of 2D perovskite microcavity polaritons, revealing material-specific relaxation mechanisms towards the control of polariton momentum.

Details

Title
Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites
Author
Laitz, Madeleine 1 ; Kaplan, Alexander E. K. 2   VIAFID ORCID Logo  ; Deschamps, Jude 2   VIAFID ORCID Logo  ; Barotov, Ulugbek 2 ; Proppe, Andrew H. 2 ; García-Benito, Inés 3 ; Osherov, Anna 1 ; Grancini, Giulia 4   VIAFID ORCID Logo  ; deQuilettes, Dane W. 5   VIAFID ORCID Logo  ; Nelson, Keith A. 2   VIAFID ORCID Logo  ; Bawendi, Moungi G. 2   VIAFID ORCID Logo  ; Bulović, Vladimir 1   VIAFID ORCID Logo 

 Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 Massachusetts Institute of Technology, Department of Chemistry, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 Universidad Complutense de Madrid, Department of Organic Chemistry, Madrid, Spain (GRID:grid.4795.f) (ISNI:0000 0001 2157 7667) 
 University of Pavia, Department of Chemistry & INSTM, Pavia, Italy (GRID:grid.8982.b) (ISNI:0000 0004 1762 5736) 
 Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
Pages
2426
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806700796
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.