It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Artificial molecular machines have captured the imagination of researchers, given their clear potential to mimic and influence human life. Key to behavior simulation is to reproduce the specific properties of physical or abstract systems. Dice throwing, as a stochastic model, is commonly used for result judgment or plan decision in real life. In this perspective we utilize DNA cube framework for the design of a dice device at the nanoscale to reproduce probabilistic events in different situations: equal probability, high probability, and low probability. We first discuss the randomness of DNA cube, or dice, adsorbing on graphene oxide, or table, and then explore a series of events that change the probability through the way in which the energy released from entropy-driven strand displacement reactions or changes in intermolecular forces. As such, the DNA nano-dice system provides guideline and possibilities for the design, engineering, and quantification of behavioral probability simulation, a currently emerging area of molecular simulation research.
Artificial molecular machines have captured the imagination of researchers, given their clear potential to mimic and influence human life. Here, the authors use a DNA cube framework for the design of a dice device at the nanoscale to reproduce probabilistic events in different situations such as equal probability, high probability, and low probability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Shanghai Jiao Tong University, Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai, P. R. China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, P. R. China (GRID:grid.16821.3c)
2 Shanghai Tenth People’s Hospital of Tongji University, Department of Clinical Laboratory Medicine, Shanghai, P. R. China (GRID:grid.412538.9) (ISNI:0000 0004 0527 0050)