It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Friction as a fundamental physical phenomenon dominates nature and human civilization, among which the achievement of molecular rolling lubrication is desired to bring another breakthrough, like the macroscale design of wheel. Herein, an edge self-curling nanodeformation phenomenon of graphite nanosheets (GNSs) at cryogenic temperature is found, which is then used to promote the formation of graphite nanorollers in friction process towards molecular rolling lubrication. The observation of parallel nanorollers at the friction interface give the experimental evidence for the occurrence of molecular rolling lubrication, and the graphite exhibits abnormal lubrication performance in vacuum with ultra-low friction and wear at macroscale. The molecular rolling lubrication mechanism is elucidated from the electronic interaction perspective. Experiments and theoretical simulations indicate that the driving force of the self-curling is the uneven atomic shrinkage induced stress, and then the shear force promotes the intact nanoroller formation, while the constraint of atomic vibration decreases the dissipation of driving stress and favors the nanoroller formation therein. It will open up a new pathway for controlling friction at microscale and nanostructural manipulation.
Molecular rolling lubrication can control friction phenomenon like a wheel. Here, the authors find the self-curled deformation effect of graphite nanosheets at cryogenic temperature, which promotes the in-situ formation of parallel nano-rollers, and acquire molecular rolling lubrication.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Chinese Academy of Sciences, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 Chinese Academy of Sciences, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou, China (GRID:grid.9227.e) (ISNI:0000000119573309)
3 Shanghai Aerospace Equipment Manufacture, Shanghai, China (GRID:grid.452783.f) (ISNI:0000 0001 0302 476X)
4 Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Changchun, China (GRID:grid.9227.e) (ISNI:0000000119573309)