Full Text

Turn on search term navigation

Copyright © 2023 Yanran Hu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

To reveal the influence of water content on the strength characteristics and brittle-plastic failure process of Xiashu loess, the direct shear test and unconfined compressive strength test of Xiashu loess with different water content were carried out, and the influence of water content on its strength characteristics and brittle-plastic failure transformation characteristics was studied. Eight kinds of Xiashu loess with different moisture contents were designed, and a direct shear test and uniaxial compression test were carried out, respectively. The results show that with the increase in water content, the shear strength and unconfined compressive strength of Xiashu loess decrease continuously. The influence of water content on cohesion in the shear strength index is greater than that of the internal friction angle. The relationship curve between cohesion and internal friction angle and water content shows obvious segmentation. When approaching the optimal water content, the downward trend is slowed down. When the water content is constant, the shear strength of the sample will also increase with the increase of normal stress. When the water content is 12% to 15%, the failure mode of Xiashu loess is a brittle failure, and the unconfined compressive strength decreases by 43.23%. When the water content is 15% to 16%, the failure mode of Xiashu loess is a transitional failure, and the unconfined compressive strength decreases by 60.38%. When the water content is greater than 16%, Xiashu loess shows plastic failure, and the unconfined compressive strength decreases slightly.

Details

Title
Study on Influence of Moisture Content on Strength and Brittle-Plastic Failure Characteristics of Xiashu Loess
Author
Hu, Yanran 1   VIAFID ORCID Logo  ; Sun, Shaorui 2   VIAFID ORCID Logo  ; Li, Kai 2   VIAFID ORCID Logo 

 School of Earth Sciences and Engineering, Hohai University, Nanjing 211111, China; School of Architectural Engineering, Tongling University, Tongling 244000, China 
 School of Earth Sciences and Engineering, Hohai University, Nanjing 211111, China 
Editor
Navaratnarajah Sathiparan
Publication year
2023
Publication date
2023
Publisher
John Wiley & Sons, Inc.
ISSN
16878086
e-ISSN
16878094
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2810660969
Copyright
Copyright © 2023 Yanran Hu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/