Abstract

The essential oils from the Centaurea genus are well known for their pharmacological properties. The most abundant and dominant chemical components in Centaurea essential oils are ß-caryophyllene, hexadecanoic acid, spathulenol, pentacosane, caryophyllene oxide, and phytol. However, whether these dominant components are the key drivers for observed antimicrobial activity remains unclear. Thus, the aim of this study was dual. Here we provide comprehensive, literature-based data to correlate the chemical compounds in Centaurea essential oils with the tested antimicrobial activity. Secondly, we characterized the essential oil of Centaurea triumfettii All. squarrose knapweed using coupled system gas chromatography–mass spectrometry and tested its phytochemicals for antimicrobial activity against E. coli and S. epidermis using disc diffusion assay and monitoring their growth in Muller Hinton broth. The most abundant compounds in C. triumfettii essential oil were hexadecanoic acid (11.1%), spathulenol (10.8%), longifolene (8.8%), germacrene D (8.4%), aromadendrene oxide (6.0%) and linoleic acid (5.3%). Based on our analysis of literature data from other Centaurea essential oils, they were positively correlated with antimicrobial activity. Using an agar disk diffusion method, tested chemical constituents did not show experimental evidence to support this positive correlation to antimicrobial activity when we tested them as pure components. The antibacterial effect of essential oil constituents may be related to a complex synergistic, rather than a single component as suggested by performed network pharmacology analysis, underlying the theoretical interactions between the essential oil phytochemicals listed as potentially responsible for antimicrobial activity and should be confirmed in further in-depth studies. This is the first report on the comparative analysis of Centaurea essential oils with good antimicrobial activity, as well as the first analysis of chemical components of the essential oil from C. triumfettii and the first report of antimicrobial activity of the representative, pure components: aromadendrene, germacrene D, spathulenol, longifolene, and the mixture of selected chemical compounds. This work contributes to the body of knowledge on the genus Centaurea and C. triumfettii species.

Details

Title
Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds
Author
Carev, Ivana 1 ; Gelemanović, Andrea 2 ; Glumac, Mateo 3 ; Tutek, Klaudia 4 ; Dželalija, Mile 5 ; Paiardini, Alessandro 6 ; Prosseda, Gianni 7 

 University of Split, Faculty of Chemistry and Technology, Split, Croatia (GRID:grid.38603.3e) (ISNI:0000 0004 0644 1675); NAOS Institute of Life Science, Aix-en-Provence, France (GRID:grid.38603.3e); Mediterranean Institute for Life Science, Split, Croatia (GRID:grid.482535.d) (ISNI:0000 0004 4663 8413) 
 Mediterranean Institute for Life Science, Split, Croatia (GRID:grid.482535.d) (ISNI:0000 0004 4663 8413) 
 University of Split, School of Medicine, Split, Croatia (GRID:grid.38603.3e) (ISNI:0000 0004 0644 1675) 
 University of Split, Faculty of Chemistry and Technology, Split, Croatia (GRID:grid.38603.3e) (ISNI:0000 0004 0644 1675) 
 University of Split, Faculty of Sciences, Split, Croatia (GRID:grid.38603.3e) (ISNI:0000 0004 0644 1675) 
 University Sapienza, Department Biochemical Sciences “A. Rossi Fanelli”, Rome, Italy (GRID:grid.7841.a) 
 University Sapienza, Department of Biology and Biotechnology “Charles Darwin”, Rome, Italy (GRID:grid.7841.a) 
Pages
7475
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2811132776
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.