Content area

Abstract

A non-intrusive model order reduction (MOR) method that combines features of the dynamic mode decomposition (DMD) and the radial basis function (RBF) network is proposed to predict the dynamics of parametric nonlinear systems. In many applications, we have limited access to the information of the whole system, which motivates non-intrusive model reduction. One bottleneck is capturing the dynamics of the solution without knowing the physics inside the "black-box" system. DMD is a powerful tool to mimic the dynamics of the system and give a reliable approximation of the solution in the time domain using only the dominant DMD modes. However, DMD cannot reproduce the parametric behavior of the dynamics. Our contribution focuses on extending DMD to parametric DMD by RBF interpolation. Specifically, a RBF network is first trained using snapshot matrices at limited parameter samples. The snapshot matrix at any new parameter sample can be quickly learned from the RBF network. DMD will use the newly generated snapshot matrix at the online stage to predict the time patterns of the dynamics corresponding to the new parameter sample. The proposed framework and algorithm are tested and validated by numerical examples including models with parametrized and time-varying inputs.

Details

1009240
Identifier / keyword
Title
Parametric Dynamic Mode Decomposition for nonlinear parametric dynamical systems
Publication title
arXiv.org; Ithaca
Publication year
2023
Publication date
Aug 1, 2023
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2023-08-02
Milestone dates
2023-05-10 (Submission v1); 2023-08-01 (Submission v2)
Publication history
 
 
   First posting date
02 Aug 2023
ProQuest document ID
2812246471
Document URL
https://www.proquest.com/working-papers/parametric-dynamic-mode-decomposition-nonlinear/docview/2812246471/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2023-08-03
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic