Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Knowledge graphs’ reasoning is of great significance for the further development of artificial intelligence and information retrieval, especially for reasoning over temporal knowledge graphs. The rotation-based method has been shown to be effective at modeling entities and relations on a knowledge graph. However, due to the lack of temporal information representation capability, existing approaches can only model partial relational patterns and they cannot handle temporal combination reasoning. In this regard, we propose HTTR: Householder Transformation-based Temporal knowledge graph Reasoning, which focuses on the characteristics of relations that evolve over time. HTTR first fuses the relation and temporal information in the knowledge graph, then uses the Householder transformation to obtain an orthogonal matrix about the fused information, and finally defines the orthogonal matrix as the rotation of the head-entity to the tail-entity and calculates the similarity between the rotated vector and the vector representation of the tail entity. In addition, we compare three methods for fusing relational and temporal information. We allow other fusion methods to replace the current one as long as the dimensionality satisfies the requirements. We show that HTTR is able to outperform state-of-the-art methods in temporal knowledge graph reasoning tasks and has the ability to learn and infer all of the four relational patterns over time: symmetric reasoning, antisymmetric reasoning, inversion reasoning, and temporal combination reasoning.

Details

Title
Householder Transformation-Based Temporal Knowledge Graph Reasoning
Author
Zhao, Xiaojuan 1 ; Li, Aiping 2 ; Jiang, Rong 2   VIAFID ORCID Logo  ; Chen, Kai 2 ; Peng, Zhichao 3   VIAFID ORCID Logo 

 Information School, Hunan University of Humanities, Science and Technology, Loudi 417000, China; College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China 
 College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China 
 Information School, Hunan University of Humanities, Science and Technology, Loudi 417000, China 
First page
2001
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812387170
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.