Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the concrete design of nanowires under the precise size and morphology that play a crucial role in the practical operation of the micro/nano devices. A straightforward and operative method termed as nib-assistance coaxial electrohydrodynamic (CEHD) printing technology was proposed. It extracts the essence of a nib-assistance electric field intensity to enhance and lessen the internal fluid reflux of the CEHD jet. The experiments were performed to add microparticles into the inner liquid to indicate the liquid flow consistency within the coaxial jet. The reflux in the coaxial jet was observed for the first time in experiments. The nanowires with a minimum size of 70 nm were printed under optimum experimental conditions. The nanopatterns contained aligned nanowires structures with diameters much smaller than the inner diameter of nozzle, relying on the coaxial nib-assisted technique. The printed results revealed that the nib-assisted CEHD printing technique offers a certain level high quality for application of NEMS system.

Details

Title
Nib-Assisted Coaxial Electrohydrodynamic Jet Printing for Nanowires Deposition
Author
Shi, Shiwei; Abbas, Zeshan  VIAFID ORCID Logo  ; Zhao, Xiangyu; Liang, Junsheng; Wang, Dazhi
First page
1457
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812509462
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.