Content area

Abstract

We first study the error performances of the Vector Weak Rescaled Pure Greedy Algorithm for simultaneous approximation with respect to a dictionary D in a Hilbert space. We show that the convergence rate of the Vector Weak Rescaled Pure Greedy Algorithm on A1(D) and the closure of the convex hull of the dictionary D is optimal. The Vector Weak Rescaled Pure Greedy Algorithm has some advantages. It has a weaker convergence condition and a better convergence rate than the Vector Weak Pure Greedy Algorithm and is simpler than the Vector Weak Orthogonal Greedy Algorithm. Then, we design a Vector Weak Rescaled Pure Greedy Algorithm in a uniformly smooth Banach space setting. We obtain the convergence properties and error bound of the Vector Weak Rescaled Pure Greedy Algorithm in this case. The results show that the convergence rate of the VWRPGA on A1(D) is sharp. Similarly, the Vector Weak Rescaled Pure Greedy Algorithm is simpler than the Vector Weak Chebyshev Greedy Algorithm and the Vector Weak Relaxed Greedy Algorithm.

Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.