Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the past few decades, solidification/stabilization (S/S) technology has been put forward for the purpose of improving soil strength and inhibiting contaminant migration in the remediation of heavy metal-contaminated sites. Cement, lime, and fly ash are among the most common and effective binders to treat contaminated soils. During S/S processing, the main interactions that are responsible for improving the soil’s behaviors can be summarized as gelification, self-hardening, and aggregation. Currently, precipitation, incorporation, and substitution have been commonly accepted as the predominant immobilization mechanisms for heavy metal ions and have been directly verified by some micro-testing techniques. While replacement of Ca2+/Si4+ in the cementitious products and physical encapsulation remain controversial, which is proposed dependent on the indirect results. Lead and zinc can retard both the initial and final setting times of cement hydration, while chromium can accelerate the initial cement hydration. Though cadmium can shorten the initial setting time, further cement hydration will be inhibited. While for mercury, the interference impact is closely associated with its adapted anion. It should be pointed out that obtaining a better understanding of the remediation mechanism involved in S/S processing will contribute to facilitating technical improvement, further extension, and application.

Details

Title
Review of the Interactions between Conventional Cementitious Materials and Heavy Metal Ions in Stabilization/Solidification Processing
Author
Liu, Jingjing 1 ; Wu, Dongbiao 2 ; Tan, Xiaohui 1   VIAFID ORCID Logo  ; Yu, Peng 2 ; Long, Xu 1 

 School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; [email protected] (X.T.); [email protected] (L.X.) 
 Anhui Urban Construction Design Institute Corp., Ltd., Hefei 230051, China; [email protected] (D.W.); [email protected] (P.Y.) 
First page
3444
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812732669
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.