Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, the development of AGS technology will likely lead to a new direction in wastewater treatment development in the future. Traditional sewage treatment technology has been unable to meet the increasingly strict quality standards of wastewater treatment and limited land requirements. AGS technology may be a new method to replace traditional sewage treatment technology. However, the stable operation of AGS technology is a major obstacle to the popularization and development of this technology. The C/N ratio is an important parameter affecting the stability and simultaneous nitrogen and phosphorus removal of AGS technology. In order to enhance the nitrogen and phosphorus removal capacity of a low-load aerobic granular sludge SBR (AGS-SBR) system, changes in the morphology, EPS, and simultaneous removal of organic matter, nitrogen, and phosphorus in the AGS system were studied by regulating different C/N ratios (20, 15, 10, 5). The changes in the microbial community in the system were deeply analyzed by high-throughput sequencing technology. The results showed that different C/N ratios have a significant effect on the nitrogen removal rate of AGS but have little effect on the removal rate of organic matter and phosphorus. When the C/N ratio was reduced to 10, it was conducive to the stability of the low-load AGS-SBR system. An effective C/N ratio promoted the secretion of EPS by microorganisms, and the increase in the PN value contributed to the stability of the granular sludge, which became smooth and compact. The main functional genus in the system were norank_f__Saprospiraceae, Tetrasphaera, Ellin6067, and Pseudomonas. In addition, the simultaneous nitrogen removal performance of the system was significantly improved.

Details

Title
Enhanced Simultaneous Nitrogen and Phosphorus Removal Performance of the AGS-SBR Reactor Based on the Effects of the C/N Ratio and Microbial Community Change
Author
Su, Lei 1 ; Li, Yafeng 2 ; Chao, Lei 2 ; Li, Qianqian 3 ; Hu, Zhiqiang 4 

 School of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China 
 School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China 
 School of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China; School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China 
 Fujian Chenxi Information Technology Group Co., Ltd., Harbin 150090, China 
First page
7691
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812737380
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.