Abstract

In this paper, we study thermodynamics, thermal fluctuations, phase transitions and the charged anti-de Sitter black hole surrounded by perfect fluid dark matter. Large black holes are shown to be stable when subject to thermal fluctuations, and we begin by exploring how these fluctuations affect the uncorrected thermodynamic quantities of entropy, Helmholtz free energy, Gibbs free energy, enthalpy specific heat, and phase transition stability. We also discuss null geodesics and the radius of the photon sphere for the charged AdS BH and use the radius of a photon sphere to calculate the Lyapunov exponent and angular velocity. Exceptionally, we test the effects of various parameters of a black hole graphically by observing the existence of the correction parameter and the coupling parameter, which reveal the behavior of corrected thermodynamic quantities. Lastly, we see how the system is stable (under the effects of the dark matter parameter) by figuring out the specific heat and Hawking temperature, which are both related to entropy.

Details

Title
Thermal fluctuations, quasi-normal modes and phase transition of the charged AdS black hole with perfect fluid dark matter
Author
Abbas, G. 1 ; Ali, R. H. 1 

 The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur, Pakistan (GRID:grid.412496.c) (ISNI:0000 0004 0636 6599) 
Pages
407
Publication year
2023
Publication date
May 2023
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2813757432
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.