It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Introduction
The Semantic Web community provides a common Resource Description Framework (RDF) that allows representation of resources such that they can be linked. To maximize the potential of linked data - machine-actionable interlinked resources on the Web - a certain level of quality of RDF resources should be established, particularly in the biomedical domain in which concepts are complex and high-quality biomedical ontologies are in high demand. However, it is unclear which quality metrics for RDF resources exist that can be automated, which is required given the multitude of RDF resources. Therefore, we aim to determine these metrics and demonstrate an automated approach to assess such metrics of RDF resources.
Methods
An initial set of metrics are identified through literature, standards, and existing tooling. Of these, metrics are selected that fulfil these criteria: (1) objective; (2) automatable; and (3) foundational. Selected metrics are represented in RDF and semantically aligned to existing standards. These metrics are then implemented in an open-source tool. To demonstrate the tool, eight commonly used RDF resources were assessed, including data models in the healthcare domain (HL7 RIM, HL7 FHIR, CDISC CDASH), ontologies (DCT, SIO, FOAF, ORDO), and a metadata profile (GRDDL).
Results
Six objective metrics are identified in 3 categories: Resolvability (1), Parsability (1), and Consistency (4), and represented in RDF. The tool demonstrates that these metrics can be automated, and application in the healthcare domain shows non-resolvable URIs (ranging from 0.3% to 97%) among all eight resources and undefined URIs in HL7 RIM, and FHIR. In the tested resources no errors were found for parsability and the other three consistency metrics for correct usage of classes and properties.
Conclusion
We extracted six objective and automatable metrics from literature, as the foundational quality requirements of RDF resources to maximize the potential of linked data. Automated tooling to assess resources has shown to be effective to identify quality issues that must be avoided. This approach can be expanded to incorporate more automatable metrics so as to reflect additional quality dimensions with the assessment tool implementing more metrics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer