Abstract

Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcriptional level has not been systematically identified across all synapse populations in the brain. To quantify and identify specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradient expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to selectively identify synapses from specific neuronal populations.

Details

Title
Transcriptional diversity in specific synaptic gene sets discriminates cortical neuronal identity
Author
Amparo Roig Adam; Martínez-López, José A; Sophie J. F. van der Spek; Sullivan, Patrick F; Smit, August B; Verhage, Matthijs; Hjerling-Leffler, Jens
Pages
1-10
Section
Research
Publication year
2023
Publication date
2023
Publisher
BioMed Central
e-ISSN
1745-6150
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2815613827
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.