It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Purpose
To develop ligamentous vertebral stabilization techniques (“vertebropexy”) that can be used after microsurgical decompression (intact posterior structures) and midline decompression (removed posterior structures) and to elaborate their biomechanical characteristics.
Methods
Fifteen spinal segments were biomechanically tested in a stepwise surgical decompression and ligamentous stabilization study. Stabilization was achieved with a gracilis or semitendinosus tendon allograft, which was attached to the spinous process (interspinous vertebropexy) or the laminae (interlaminar vertebropexy) in form of a loop. The specimens were tested (1) in the native state, after (2) microsurgical decompression, (3) interspinous vertebropexy, (4) midline decompression, and (5) interlaminar vertebropexy. In the intact state and after every surgical step, the segments were loaded in flexion–extension (FE), lateral shear (LS), lateral bending (LB), anterior shear (AS) and axial rotation (AR).
Results
Interspinous vertebropexy significantly reduced the range of motion (ROM) in all loading scenarios compared to microsurgical decompression: in FE by 70% (p < 0.001), in LS by 22% (p < 0.001), in LB by 8% (p < 0.001) in AS by 12% (p < 0.01) and in AR by 9% (p < 0.001). Interlaminar vertebropexy decreased ROM compared to midline decompression by 70% (p < 0.001) in FE, 18% (p < 0.001) in LS, 11% (p < 0.01) in LB, 7% (p < 0.01) in AS, and 4% (p < 0.01) in AR. Vertebral segment ROM was significantly smaller with the interspinous vertebropexy compared to the interlaminar vertebropexy for all loading scenarios except FE. Both techniques were able to reduce vertebral body segment ROM in FE, LS and LB beyond the native state.
Conclusion
Vertebropexy is a new concept of semi-rigid spinal stabilization based on ligamentous reinforcement of the spinal segment. It is able to reduce motion, especially in flexion–extension. Studies are needed to evaluate its clinical application.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Balgrist University Hospital, University of Zurich, Department of Orthopedics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650); University Spine Center Zurich, Balgrist University Hospital, University of Zurich, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650)
2 ETH Zurich, Institute of Biomechanics, Zurich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780); Balgrist University Hospital, University of Zurich, Spine Biomechanics, Department of Orthopedic Surgery, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650)
3 Balgrist University Hospital, University of Zurich, Department of Orthopedics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650)