Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The flow past an axisymmetric body at a sufficiently high angle of attack becomes asymmetric and unsteady. Several authors identified three different flow regions for bodies of large fineness ratio at low subsonic flow and high incidence: a steady region in the forebody and two unsteady regions in the rear body. Unsteady Reynolds Averaged Navier–Stokes (URANS) codes with eddy viscosity turbulence models or Reynolds stress turbulence models fail to capture the unsteady flow region. These methods are overly dissipative and resolve only frequencies far lower than turbulent fluctuations. Scale-Adaptive-Simulation (SAS) provides an alternative method to afford the problem of these massively separated flows at high Reynolds numbers without addressing the problem to Large Eddy Simulation (LES). This paper applies SAS to study the effect of slenderness on the flow. The numerical solutions show that the flow becomes more unstable as the fineness ratio increases, and the three flow regions are clearly recognizable. For low fineness ratios, only one of the two unsteady regions is visible. The good agreement between the sectional forces and pressure coefficients with their corresponding experimental data for an ogive-cylinder configuration allows an analysis of the flow structure with a fair degree of confidence.

Details

Title
Fineness Ratio Effects on the Flow Past an Axisymmetric Body at High Incidence
Author
Jiménez-Varona, José  VIAFID ORCID Logo  ; Liaño, Gabriel
First page
432
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819259824
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.