Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Olive mill residues have been valorized by chemical modification with amines to improve their adsorption capacity and to be used as a low-cost bioadsorbent for nitrate removal. The Taguchi method was used to optimize the process. By performing a three-factor analysis with three levels, it was possible to significantly reduce the number of experiments to be performed and to obtain the best working conditions. The results of the Taguchi method showed that the highest adsorption capacity was 110 mg·g−1 with a functionalized biomass dose of 1 g·L−1 using an initial nitrate concentration of 500 mg·L−1. Field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface morphology and study the chemical changes that occurred in the biomass. For the best conditions of the Taguchi approach, the kinetic and equilibrium aspects of the adsorption process were analyzed. The adsorption isotherms obtained were successfully fitted to the Freundlich (R2 = 0.98) and Langmuir (R2 = 0.97) models. The kinetics of the process were studied, and the data obtained fit very well to the pseudo-second-order model (R2 = 0.99). The adsorption values obtained suggest that it is a bioadsorbent with great potential for nitrate retention in aqueous solutions.

Details

Title
A Promising, Highly Effective Nitrate Sorbent Derived from Solid Olive Mill Residues
Author
Angosto, José M; Obón, José M  VIAFID ORCID Logo  ; Roca, María J; Alacid, Mercedes  VIAFID ORCID Logo  ; Fernández-López, José A  VIAFID ORCID Logo 
First page
1325
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819263687
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.