Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of this study was to assess the applicability of the bacterial lux biosensors for genotoxicological studies. Biosensors are the strains of E. coli MG1655 carrying a recombinant plasmid with the lux operon of the luminescent bacterium P. luminescens fused with the promoters of inducible genes: recA, colD, alkA, soxS, and katG. The genotoxicity of forty-seven chemical compounds was tested on a set of three biosensors pSoxS-lux, pKatG-lux and pColD-lux, which allowed us to estimate the oxidative and DNA-damaging activity of the analyzed drugs. The comparison of the results with the data on the mutagenic activity of these drugs from the Ames test showed a complete coincidence of the results for the 42 substances. First, using lux biosensors, we have described the enhancing effect of the heavy non-radioactive isotope of hydrogen deuterium (D2O) on the genotoxicity of chemical compounds as possible mechanisms of this effect. The study of the modifying effect of 29 antioxidants and radioprotectors on the genotoxic effects of chemical agents showed the applicability of a pair of biosensors pSoxS-lux and pKatG-lux for the primary assessment of the potential antioxidant and radioprotective activity of chemical compounds. Thus, the results obtained showed that lux biosensors can be successfully used to identify potential genotoxicants, radioprotectors, antioxidants, and comutagens among chemical compounds, as well as to study the probable mechanism of genotoxic action of test substance.

Details

Title
Bacterial Lux Biosensors in Genotoxicological Studies
Author
Abilev, Serikbai K  VIAFID ORCID Logo  ; Igonina, Elena V; Sviridova, Darya A; Smirnova, Svetlana V  VIAFID ORCID Logo 
First page
511
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819360145
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.