Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Risks and uncertainties are inevitable in construction projects and can drastically change the expected outcome, negatively impacting the project’s success. However, risk management (RM) is still conducted in a manual, largely ineffective, and experience-based fashion, hindering automation and knowledge transfer in projects. The construction industry is benefitting from the recent Industry 4.0 revolution and the advancements in data science branches, such as artificial intelligence (AI), for the digitalization and optimization of processes. Data-driven methods, e.g., AI and machine learning algorithms, Bayesian inference, and fuzzy logic, are being widely explored as possible solutions to RM domain shortcomings. These methods use deterministic or probabilistic risk reasoning approaches, the first of which proposes a fixed predicted value, and the latter embraces the notion of uncertainty, causal dependencies, and inferences between variables affecting projects’ risk in the predicted value. This research used a systematic literature review method with the objective of investigating and comparatively analyzing the main deterministic and probabilistic methods applied to construction RM in respect of scope, primary applications, advantages, disadvantages, limitations, and proven accuracy. The findings established recommendations for optimum AI-based frameworks for different management levels—enterprise, project, and operational—for large or small data sets.

Details

Title
Deterministic and Probabilistic Risk Management Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis
Author
Khodabakhshian, Ania 1 ; Puolitaival, Taija 2   VIAFID ORCID Logo  ; Kestle, Linda 3 

 Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Via Ponzio, 31, 20133 Milan, Italy; [email protected] 
 Faculty of Built Environment, Tampere University, FI-33014 Tampere, Finland; [email protected] 
 School of Building Construction, Unitec Institute of Technology, P.O. Box 92025, Auckland 1142, New Zealand 
First page
1312
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819413457
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.