Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

One of the many areas in which artificial intelligence (AI) techniques are used is the development of systems for the recognition of vital emotions to control human health and safety. This study used biometric sensors in a multimodal approach to capture signals in the recognition of stressful situations. The great advances in technology have allowed the development of portable devices capable of monitoring different physiological measures in an inexpensive, non-invasive, and efficient manner. Virtual reality (VR) has evolved to achieve a realistic immersive experience in different contexts. The combination of AI, signal acquisition devices, and VR makes it possible to generate useful knowledge even in challenging situations in daily life, such as when driving. The main goal of this work is to combine the use of sensors and the possibilities offered by VR for the creation of a system for recognizing stress during different driving situations in a vehicle. We investigated the feasibility of detecting stress in individuals using physiological signals collected using a photoplethysmography (PPG) sensor incorporated into a commonly used wristwatch. We developed an immersive environment based on VR to simulate experimental situations and collect information on the user’s reactions through the detection of physiological signals. Data collected through sensors in the VR simulations are taken as input to several models previously trained by machine learning (ML) algorithms to obtain a system that performs driver stress detection and high-precision classification in real time.

Details

Title
Driver Stress Detection from Physiological Signals by Virtual Reality Simulator
Author
Mateos-García, Nuria; Gil-González, Ana-Belén  VIAFID ORCID Logo  ; Luis-Reboredo, Ana  VIAFID ORCID Logo  ; Pérez-Lancho, Belén  VIAFID ORCID Logo 
First page
2179
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819443938
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.