Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

According to the American Humane Association, millions of cats and dogs are lost yearly. Only a few thousand of them are found and returned home. In this work, we use deep learning to help expedite the procedure of finding lost cats and dogs, for which a new dataset is collected. We applied transfer learning methods on different convolutional neural networks for species classification and animal identification. The framework consists of seven sequential layers: data preprocessing, species classification, face and body detection with landmark detection techniques, face alignment, identification, animal soft biometrics, and recommendation. We achieved an accuracy of 98.18% on species classification. In the face identification layer, 80% accuracy was achieved. Body identification resulted in 81% accuracy. When using body identification in addition to face identification, the accuracy increased to 86.5%, with a 100% chance that the animal would be in our top 10 recommendations of matching. By incorporating animals’ soft biometric information, the system can identify animals with 92% confidence.

Details

Title
Deep Learning Pet Identification Using Face and Body
Author
Azizi, Elham  VIAFID ORCID Logo  ; Zaman, Loutfouz  VIAFID ORCID Logo 
First page
278
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819450018
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.