Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Deep neural networks have gained popularity in the field of mammography. Data play an integral role in training these models, as training algorithms requires a large amount of data to capture the general relationship between the model’s input and output. Open-access databases are the most accessible source of mammography data for training neural networks. Our work focuses on conducting a comprehensive survey of mammography databases that contain images with defined abnormal areas of interest. The survey includes databases such as INbreast, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM), the OPTIMAM Medical Image Database (OMI-DB), and The Mammographic Image Analysis Society Digital Mammogram Database (MIAS). Additionally, we surveyed recent studies that have utilized these databases in conjunction with neural networks and the results they have achieved. From these databases, it is possible to obtain at least 3801 unique images with 4125 described findings from approximately 1842 patients. The number of patients with important findings can be increased to approximately 14,474, depending on the type of agreement with the OPTIMAM team. Furthermore, we provide a description of the annotation process for mammography images to enhance the understanding of the information gained from these datasets.

Details

Title
Mammography Datasets for Neural Networks—Survey
Author
Mračko, Adam 1   VIAFID ORCID Logo  ; Vanovčanová, Lucia 2   VIAFID ORCID Logo  ; Cimrák, Ivan 1   VIAFID ORCID Logo 

 Faculty of Management Science and Informatics, University of Žilina, 010 26 Žilina, Slovakia; Research Centre, University of Žilina, 010 26 Žilina, Slovakia 
 2nd Radiology Department, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; St. Elizabeth Cancer Institute, 812 50 Bratislava, Slovakia 
First page
95
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2313433X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819454070
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.