Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The main aim of this study is to synthesize contrast microbubbles (MB) functionalized with engineered protein ligands using a microfluidic device to target breast cancer specific vascular B7-H3 receptor in vivo for diagnostic ultrasound imaging. We used a high-affinity affibody (ABY) selected against human/mouse B7-H3 receptor for engineering targeted MBs (TMBs). We introduced a C-terminal cysteine residue to this ABY ligand for facilitating site-specific conjugation to DSPE-PEG-2K-maleimide (M. Wt = 2.9416 kDa) phospholipid for MB formulation. We optimized the reaction conditions of bioconjugations and applied it for microfluidic based synthesis of TMBs using DSPE-PEG-ABY and DPPC liposomes (5:95 mole %). The binding affinity of TMBs to B7-H3 (MBB7-H3) was tested in vitro in MS1 endothelial cells expressing human B7-H3 (MS1B7-H3) by flow chamber assay, and by ex vivo in the mammary tumors of a transgenic mouse model (FVB/N-Tg (MMTV-PyMT)634Mul/J), expressing murine B7-H3 in the vascular endothelial cells by immunostaining analyses. We successfully optimized the conditions needed for generating TMBs using a microfluidic system. The synthesized MBs showed higher affinity to MS1 cells engineered to express higher level of hB7-H3, and in the endothelial cells of mouse tumor tissue upon injecting TMBs in a live animal. The average number (mean ± SD) of MBB7-H3 binding to MS1B7-H3 cells was estimated to be 354.4 ± 52.3 per field of view (FOV) compared to wild-type control cells (MS1WT; 36.2 ± 7.5/FOV). The non-targeted MBs did not show any selective binding affinity to both the cells (37.7 ± 7.8/FOV for MS1B7-H3 and 28.3 ± 6.7/FOV for MS1WT cells). The fluorescently labeled MBB7-H3 upon systemic injection in vivo co-localized to tumor vessels, expressing B7-H3 receptor, as validated by ex vivo immunofluorescence analyses. We have successfully synthesized a novel MBB7-H3 via microfluidic device, which allows us to produce on demand TMBs for clinical applications. This clinically translatable MBB7-H3 showed significant binding affinity to vascular endothelial cells expressing B7-H3 both in vitro and in vivo, which shows its potential for clinical translation as a molecular ultrasound contrast agent for human applications.

Details

Title
Synthesis and Evaluation of Clinically Translatable Targeted Microbubbles Using a Microfluidic Device for In Vivo Ultrasound Molecular Imaging
Author
Bam, Rakesh; Natarajan, Arutselvan  VIAFID ORCID Logo  ; Tabesh, Farbod  VIAFID ORCID Logo  ; Ramasamy Paulmurugan  VIAFID ORCID Logo  ; Dahl, Jeremy J
First page
9048
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819457554
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.