Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This report presents the results of long-term tests on concrete beams reinforced with steel cord. In this study, natural aggregate was wholly replaced with waste sand or with wastes from the production of ceramic products and ceramic hollow bricks. The amounts of individual fractions used were determined in accordance with guidelines for reference concrete. A total of eight mixtures were tested; these differed in terms of the type of waste aggregate used. Elements with various fiber-reinforcement ratios were made for each mixture. Steel fibers and waste fibers were used in amounts of 0.0%, 0.5%, and 1.0%. Compressive strength and modulus of elasticity were determined experimentally for each mixture. The main test was a four-point beam bending test. Beams with dimensions of 100 mm × 200 mm × 2900 mm were tested on a stand, which was specially prepared so that three beams could be tested simultaneously. Fiber-reinforcement ratios were 0.5% and 1.0%. Long-term studies were conducted for 1000 days. During the testing period, beam deflections and cracks were measured. The obtained results were compared with values calculated using several methods, considering the influence of dispersed reinforcement. The results enabled the best methods for calculating individual values for mixtures with different types of waste materials to be determined.

Details

Title
Cracking Behavior and Deflections in Recycled-Aggregate Beams Reinforced with Waste Fibers Subjected to Long-Term Constant Loading
Author
Zakrzewski, Mateusz; Domski, Jacek  VIAFID ORCID Logo 
First page
3622
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819475556
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.