Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Kolmogorov and total variation distance between the laws of random variables have upper bounds represented by the L1-norm of densities when random variables have densities. In this paper, we derive an upper bound, in terms of densities such as the Kolmogorov and total variation distance, for several probabilistic distances (e.g., Kolmogorov distance, total variation distance, Wasserstein distance, Forter–Mourier distance, etc.) between the laws of F and G in the case where a random variable F follows the invariant measure that admits a density and a differentiable random variable G, in the sense of Malliavin calculus, and also allows a density function.

Details

Title
Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus
Author
Yoon-Tae, Kim; Park, Hyun-Suk  VIAFID ORCID Logo 
First page
2302
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819476021
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.