Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Biological treatment methods overcome many of the drawbacks of physicochemical strategies and play a significant role in removing dye contamination for environmental sustainability. Numerous microorganisms have been investigated as promising dye-degrading candidates because of their high metabolic potential. However, few can be applied on a large scale because of the extremely harsh conditions in effluents polluted with multiple dyes, such as alkaline pH, high salinity/heavy metals/dye concentration, high temperature, and oxidative stress. Therefore, extremophilic microorganisms offer enormous opportunities for practical biodegradation processes as they are naturally adapted to multi-stress conditions due to the special structure of their cell wall, capsule, S-layer proteins, extracellular polymer substances (EPS), and siderophores structural and functional properties such as poly-enzymes produced. This review provides scientific information for a broader understanding of general dyes, their toxicity, and their harmful effects. The advantages and disadvantages of physicochemical methods are also highlighted and compared to those of microbial strategies. New techniques and methodologies used in recent studies are briefly summarized and discussed. In particular, this study addresses the key adaptation mechanisms, whole-cell, enzymatic degradation, and non-enzymatic pathways in aerobic, anaerobic, and combination conditions of extremophiles in dye degradation and decolorization. Furthermore, they have special metabolic pathways and protein frameworks that contribute significantly to the complete mineralization and decolorization of the dye when all functions are turned on. The high potential efficiency of microbial degradation by unculturable and multi-enzyme-producing extremophiles remains a question that needs to be answered in practical research.

Details

Title
Investigating Bio-Inspired Degradation of Toxic Dyes Using Potential Multi-Enzyme Producing Extremophiles
Author
Van Hong Thi Pham 1   VIAFID ORCID Logo  ; Kim, Jaisoo 2 ; Chang, Soonwoong 1 ; Bang, Donggyu 3 

 Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Republic of Korea 
 Department of Life Science, College of Natural Science of Kyonggi University, Suwon 16227, Republic of Korea; [email protected] 
 Department of Environmental Energy Engineering, Graduate School of Kyonggi University, Suwon 16227, Republic of Korea; [email protected] 
First page
1273
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819477487
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.