Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metasurfaces can be opportunely and specifically designed to manipulate electromagnetic wavefronts. In recent years, a large variety of metasurface-based optical devices such as planar lenses, beam deflectors, polarization converters, and so on have been designed and fabricated. Of particular interest are tunable metasurfaces, which allow the modulation of the optical response of a metasurface; for instance, the variation in the focal length of a converging metalens. Response tunability can be achieved through external sources that modify the permittivity of the materials constituting the nanoatoms, the substrate, or both. The modulation sources can be classified into electromagnetic fields, thermal sources, mechanical stressors, and electrical bias. Beside this, we will consider optical modulation and multiple approach tuning strategies. A great variety of tunable materials have been used in metasurface engineering, such as transparent conductive oxides, ferroelectrics, phase change materials, liquid crystals, and semiconductors. The possibility of tuning the optical properties of these metamaterials is very important for several applications spanning from basic optics to applied optics for communications, depth sensing, holographic displays, and biochemical sensors. In this review, we summarize the recent progress on electro-optical magnetic, mechanical, and thermal tuning of metasurfaces actually fabricated and experimentally tested in recent years. At the end of the review, a short section on possible future perspectives and applications is included.

Details

Title
Recent Advances in Tunable Metasurfaces and Their Application in Optics
Author
Santonocito, Alberto 1 ; Patrizi, Barbara 2   VIAFID ORCID Logo  ; Toci, Guido 2 

 National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; [email protected] (A.S.); [email protected] (G.T.); Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy 
 National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; [email protected] (A.S.); [email protected] (G.T.) 
First page
1633
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819478645
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.