Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Having highly accurate and reliable Digital Elevation Models (DEMs) of the Earth’s surface is critical to orthorectify Landsat imagery. Without such accuracy, pixel locations reported in the data are difficult to assure as accurate, especially in more mountainous landscapes, where the orthorectification process is the most challenging. To this end, the Landsat Calibration and Validation Team (Cal/Val) compared the Copernicus DEM (CopDEM) to the DEM that is currently used in Collection-2 processing (called “Collection-2 DEM”). NGS ground-surveyed and lidar-based ICESat-2 points were used, and the CopDEM shows improvement to be less than 1 m globally, except in Asia where the accuracy and resolution of the DEM were greater for the CopDEM compared to the Collection-2 DEM. Along with slightly improved accuracy, the CopDEM showed more consistent results globally due to its virtually seamless source and consistent creation methods throughout the dataset. While CopDEM is virtually seamless, having greater than 99% of their data coming from a single source (Tandem-X), there are significantly more voids in the higher elevations which were mostly filled with SRTM derivatives. The accuracy of the CopDEM fill imagery was also compared to the Collection-2 DEM and the results were very similar, showing that the choice of fill imagery used by CopDEM was appropriate. A qualitative assessment using terrain-corrected products processed with different DEMs and viewing them as anaglyphs to evaluate the DEMs proved useful for assessing orbital path co-registration. While the superiority of the CopDEM was not shown to be definitive by the qualitative method for many of the regions assessed, the CopDEM showed a clear advantage in Northern Russia, where the Collection-2 DEM uses some of the oldest and least accurate datasets in the compilation of the Collection-2 DEM. This paper presents results from the comparison study, along with the justification for proceeding with using the Copernicus DEM in future Landsat processing. As of this writing, the Copernicus DEM is planned to be used in Collection-3 processing, which is anticipated to be released no earlier than 2025.

Details

Title
Evaluation of Copernicus DEM and Comparison to the DEM Used for Landsat Collection-2 Processing
Author
Franks, Shannon; Rengarajan, Rajagopalan  VIAFID ORCID Logo 
First page
2509
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819481859
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.