Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Real-time hybrid testing (RTH) is a test method for dynamic loading performance evaluation of structures, which is divided into digital simulation and physical testing, but the integration of the two may lead to problems such as time lag, large errors, and slow response time. The electro-hydraulic servo displacement system, as the transmission system of the physical test structure, directly affects the operational performance of RTH. Improving the performance of the electro-hydraulic servo displacement control system has become the key to solving the problem of RTH. In this paper, the FF-PSO-PID algorithm is proposed to control the electro-hydraulic servo system in real-time hybrid testing (RTH), which uses the PSO algorithm to operate the optimized PID parameters and the feed-forward compensation algorithm to compensate the displacement. First, the mathematical model of the electro-hydraulic displacement servo system in RTH is presented and the actual parameters are determined. Then, the objective evaluation function of the PSO algorithm is proposed to optimize the PID parameters in the context of RTH operation, and a displacement feed-forward compensation algorithm is added for theoretical study. To verify the effectiveness of the method, joint simulations were performed in Matlab/Simulink to compare and test FF-PSO-PID, PSO-PID, and conventional PID (PID) under different input signals. The results show that the proposed FF-PSO-PID algorithm effectively improves the accuracy and response speed of the electro-hydraulic servo displacement system and solves the problems of RTH time lag, large error, and slow response.

Details

Title
Real-Time Hybrid Test Control Research Based on Improved Electro-Hydraulic Servo Displacement Algorithm
Author
Shen, Yaoyu; Ying-Qing Guo  VIAFID ORCID Logo  ; Zha, Xiumei  VIAFID ORCID Logo  ; Wang, Yina
First page
4765
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819482209
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.