Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As a kind of ubiquitous emerging pollutant, microplastics (MPs) are persistent in the environment and have a large impact on the ecosystem. Fortunately, some microorganisms in the natural environment can degrade these persistent MPs without creating secondary pollution. In this study, 11 different MPs were selected as carbon sources to screen the microorganisms for degradable MPs and explore the possible mechanism of degradation. After repeated domestication, a relatively stable microbial community was obtained after approximately 30 days later. At this time, the biomass of the medium ranged from 88 to 699 mg/L. The growth of bacteria with different MPs ranged from 0.030 to 0.090 optical density (OD) 600 of the first generation to 0.009–0.081 OD 600 of the third generation. The weight loss method was used to determine the biodegradation ratios of different MPs. The mass losses of polyhydroxybutyrate (PHB), polyethylene (PE), and polyhydroxyalkanoate (PHA) were relatively large, at 13.4%, 13.0%, and 12.7%, respectively; these figures for polyvinyl chloride (PVC) and polystyrene (PS) were relatively slight, 8.90% and 9.10%, respectively. The degradation half-life (t1/2) of 11 kinds of MPs ranges from 67 to 116 days. Among the mixed strains, Pseudomonas sp., Pandoraea sp., and Dyella sp. grew well. The possible degradation mechanism is that such microbial aggregates can adhere to the surface of MPs and form complex biofilms, secrete extracellular and intracellular enzymes, etc., break the hydrolyzable chemical bonds or ends of molecular chains by attacking the plastic molecular chains, and produce monomers, dimers, and other oligomers, leading to the reduction of the molecular weight of the plastic itself.

Details

Title
Biodeterioration of Microplastics by Bacteria Isolated from Mangrove Sediment
Author
Shu-Yan, Ren; Hong-Gang Ni
First page
432
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819484049
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.