Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tetracycline (TC) is an antibiotic commonly used to treat bacterial infections. It is detected in wastewater and is considered an emerging contaminant that must be removed before discharge to water bodies. This study examined its adsorption on commercial biochar, a low-cost and sustainable adsorbent produced from the agricultural waste of citrus trees, in both batch and continuous flow systems and from synthetic and real wastewater. The surface area of the biochar was determined using Brunauer–Emmett–Teller (BET) analysis to be 364.903 m2/g. Batch experiments were conducted using biochar doses of 1.5–3.5 g/50 mL; initial TC concentrations of 30–90 mg/L; pH values of 4, 7, and 11; and temperatures of 20, 30, and 40 °C. The results show that TC was successfully removed from both synthetic and real wastewater at removal rates reaching 87% at pH = 4, an adsorbent dose of 3.5 g/50 mL, an initial adsorbate concentration of 90 mg/L, and a temperature of 20 °C in batch experiments for synthetic wastewater and at removal rates reaching 95% for real wastewater. Thermodynamic parameter estimation results revealed that the process is exothermic and spontaneous, while kinetic results showed that adsorption is a multi-step process. TC adsorption on biochar was found to be a physical process. In continuous-mode operation, removal reached 37% at a bed depth of 3 cm. Scanning electron microscopy (SEM) morphologies and Fourier-transform infrared (FTIR) spectroscopy confirmed the occurrence of adsorption.

Details

Title
Characteristics of Tetracycline Adsorption on Commercial Biochar from Synthetic and Real Wastewater in Batch and Continuous Operations: Study of Removal Mechanisms, Isotherms, Kinetics, Thermodynamics, and Desorption
Author
Rizkallah, Basem M 1 ; Galal, Mona M 2 ; Matta, Minerva E 2 

 Khatib and Alami, Giza 12655, Egypt 
 Sanitary and Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza 12613, Egypt 
First page
8249
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819496369
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.