It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Accuracy of large-angle scattering cross section in nuclear data has a large contribution on precision of neutron transport calculation in fusion reactor design. In the previous research, benchmark experiments for a solid target were carried out, however, non-solid targets, which are enclosed in a container, could not be dealt with. This is because we were not able to remove the effect due to existence of the container in the previous method. In this study, we performed design study of advanced benchmark experiment for large-angle scattering cross section especially for a non-solid target in a container. In addition, we also carried out benchmark experiments for silicon, which is important for the fusion reactor, however, is one of the elements that are difficult to obtain a solid target. In conclusion, we successfully developed an advanced benchmark experimental method for non-solid targets and verified it numerically by Monte Carlo calculation. In addition, we also found experimentally that large-angle scattering cross section of silicon is underestimated in JENDL-4, ENDF-B/VIII and JEFF-3.3.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer