Abstract

While the development of prehospital diagnosis scales has been reported in various regions, we have also developed a scale to predict stroke type using machine learning. In the present study, we aimed to assess for the first time a scale that predicts the need for surgical intervention across stroke types, including subarachnoid haemorrhage and intracerebral haemorrhage. A multicentre retrospective study was conducted within a secondary medical care area. Twenty-three items, including vitals and neurological symptoms, were analysed in adult patients suspected of having a stroke by paramedics. The primary outcome was a binary classification model for predicting surgical intervention based on eXtreme Gradient Boosting (XGBoost). Of the 1143 patients enrolled, 765 (70%) were used as the training cohort, and 378 (30%) were used as the test cohort. The XGBoost model predicted stroke requiring surgical intervention with high accuracy in the test cohort, with an area under the receiver operating characteristic curve of 0.802 (sensitivity 0.748, specificity 0.853). We found that simple survey items, such as the level of consciousness, vital signs, sudden headache, and speech abnormalities were the most significant variables for accurate prediction. This algorithm can be useful for prehospital stroke management, which is crucial for better patient outcomes.

Details

Title
Prehospital stroke-scale machine-learning model predicts the need for surgical intervention
Author
Yoshida, Yoichi 1 ; Hayashi, Yosuke 2 ; Shimada, Tadanaga 2 ; Hattori, Noriyuki 2 ; Tomita, Keisuke 2 ; Miura, Rie E. 3 ; Yamao, Yasuo 3 ; Tateishi, Shino 3 ; Iwadate, Yasuo 4 ; Nakada, Taka-aki 3 

 Chiba Municipal Kaihin Hospital, Department of Neurosurgery, Chiba, Japan; Chiba University, Department of Neurological Surgery, Graduate School of Medicine, Chiba, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101) 
 Chiba University Graduate School of Medicine, Department of Emergency and Critical Care Medicine, Chuo, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101) 
 Chiba University Graduate School of Medicine, Department of Emergency and Critical Care Medicine, Chuo, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101); SMART119 Inc., Chiba, Japan (GRID:grid.136304.3) 
 Chiba University, Department of Neurological Surgery, Graduate School of Medicine, Chiba, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101) 
Pages
9135
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2822567618
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.