Full text

Turn on search term navigation

© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The temperature of the Earth is one of the most important climate parameters. Proxy records of past climate changes, in particular temperature, represent a fundamental tool for exploring internal climate processes and natural climate forcings. Despite the excellent information provided by ice core records in Antarctica, the temperature variability of the past 2000 years is difficult to evaluate from the low-accumulation sites in the Antarctic continent interior. Here we present the results from the Aurora Basin North (ABN) ice core (71 S, 111 E, 2690 m a.s.l.) in the lower part of the East Antarctic plateau, where accumulation is substantially higher than other ice core drilling sites on the plateau, and provide unprecedented insight into East Antarctic past temperature variability. We reconstructed the temperature of the last 2000 years using two independent methods: the widely used water stable isotopes (δ18O) and by inverse modelling of borehole temperature and past temperature gradients estimated from the inert gas stable isotopes (δ40Ar and δ15N). This second reconstruction is based on three independent measurement types: borehole temperature, firn thickness, and firn temperature gradient. The δ18O temperature reconstruction supports stable temperature conditions within 1 C over the past 2000 years, in agreement with other ice core δ18O records in the region. However, the gas and borehole temperature reconstruction suggests that surface conditions 2 C cooler than average prevailed in the 1000–1400 CE period and supports a 20th century warming of 1 C. A precipitation hiatus during cold periods could explain why water isotope temperature reconstruction underestimates the temperature changes. Both reconstructions arguably record climate in their own way, with a focus on atmospheric and hydrologic cycles for water isotopes, as opposed to surface temperature for gas isotopes and boreholes. This study demonstrates the importance of using a variety of sources for comprehensive paleoclimate reconstructions.

Details

Title
A 2000-year temperature reconstruction on the East Antarctic plateau from argon–nitrogen and water stable isotopes in the Aurora Basin North ice core
Author
Servettaz, Aymeric P M 1   VIAFID ORCID Logo  ; Orsi, Anaïs J 2   VIAFID ORCID Logo  ; Curran, Mark A J 3 ; Moy, Andrew D 3   VIAFID ORCID Logo  ; Landais, Amaelle 4 ; McConnell, Joseph R 5   VIAFID ORCID Logo  ; Popp, Trevor J 6 ; Emmanuel Le Meur 7   VIAFID ORCID Logo  ; Faïn, Xavier 7   VIAFID ORCID Logo  ; Chappellaz, Jérôme 8 

 Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Yokosuka, 237-0061, Japan 
 Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada 
 Australian Antarctic Division, Kingston, 7050, Tasmania, Australia; Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, 7000, Tasmania, Australia 
 Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91190 Gif-sur-Yvette, France 
 Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada 89512, USA 
 Niels Bohr Institute, University of Copenhagen, Copenhagen, 2200, Denmark 
 Institut des Géosciences de l'Environnement, University Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, France 
 Institut des Géosciences de l'Environnement, University Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, France; Institut d’Ingénierie de l’Environnement, Ecole Polytechnique Fédérale de Lausanne EPFL, 1951, Sion, Switzerland 
Pages
1125-1152
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
18149324
e-ISSN
18149332
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2822978281
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.