Content area

Abstract

The production of food, feed, fiber, and fuel is a key task of agriculture, which has to cope with many challenges in the upcoming decades, e.g., a higher demand, climate change, lack of workers, and the availability of arable land. Vision systems can support making better and more sustainable field management decisions, but also support the breeding of new crop varieties by allowing temporally dense and reproducible measurements. Recently, agricultural robotics got an increasing interest in the vision and robotics communities since it is a promising avenue for coping with the aforementioned lack of workers and enabling more sustainable production. While large datasets and benchmarks in other domains are readily available and enable significant progress, agricultural datasets and benchmarks are comparably rare. We present an annotated dataset and benchmarks for the semantic interpretation of real agricultural fields. Our dataset recorded with a UAV provides high-quality, pixel-wise annotations of crops and weeds, but also crop leaf instances at the same time. Furthermore, we provide benchmarks for various tasks on a hidden test set comprised of different fields: known fields covered by the training data and a completely unseen field. Our dataset, benchmarks, and code are available at \url{https://www.phenobench.org}.

Details

1009240
Title
PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Jul 24, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-07-25
Milestone dates
2023-06-07 (Submission v1); 2024-07-24 (Submission v2)
Publication history
 
 
   First posting date
25 Jul 2024
ProQuest document ID
2823796831
Document URL
https://www.proquest.com/working-papers/phenobench-large-dataset-benchmarks-semantic/docview/2823796831/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-07-26
Database
ProQuest One Academic